Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Walter de Gruyter GmbH ; 2022
    In:  International Journal of Emerging Electric Power Systems Vol. 0, No. 0 ( 2022-08-18)
    In: International Journal of Emerging Electric Power Systems, Walter de Gruyter GmbH, Vol. 0, No. 0 ( 2022-08-18)
    Kurzfassung: In the process of operation and maintenance of digital three-dimensional substation, affected by the fault feature extraction method, the anti-interference ability of the detection method is poor. Therefore, a digital three-dimensional substation fault detection method based on singular value decomposition is proposed. According to the digital twin five-dimensional concept, a three-dimensional management and control model of the substation is built, the real-time collected current signal is denoised, and then a new feature extraction method is designed by using the singular value decomposition theory, and the characteristic parameters of the fault signal are defined. Finally, the maximum wavelet singular value is calculated by combining the wavelet transformation method and the singular value decomposition principle. The fault detection is completed according to the mutation of singular value. The simulation experiment results show that the proposed fault detection method has improved the anti-interference ability by 44 and 86%. It is verified that the method proposed in this study has good fault detection effect, and provides auxiliary decision-making basis for relevant departments.
    Materialart: Online-Ressource
    ISSN: 2194-5756 , 1553-779X
    Sprache: Englisch
    Verlag: Walter de Gruyter GmbH
    Publikationsdatum: 2022
    ZDB Id: 2207265-2
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz