Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2023
    In:  Nanophotonics Vol. 12, No. 15 ( 2023-07-20), p. 3165-3177
    In: Nanophotonics, Walter de Gruyter GmbH, Vol. 12, No. 15 ( 2023-07-20), p. 3165-3177
    Abstract: Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning–based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation.
    Type of Medium: Online Resource
    ISSN: 2192-8614
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2674162-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages