In:
Statistical Applications in Genetics and Molecular Biology, Walter de Gruyter GmbH, Vol. 22, No. 1 ( 2023-01-27)
Abstract:
Permutation tests are widely used for statistical hypothesis testing when the sampling distribution of the test statistic under the null hypothesis is analytically intractable or unreliable due to finite sample sizes. One critical challenge in the application of permutation tests in genomic studies is that an enormous number of permutations are often needed to obtain reliable estimates of very small p -values, leading to intensive computational effort. To address this issue, we develop algorithms for the accurate and efficient estimation of small p -values in permutation tests for paired and independent two-group genomic data, and our approaches leverage a novel framework for parameterizing the permutation sample spaces of those two types of data respectively using the Bernoulli and conditional Bernoulli distributions, combined with the cross-entropy method. The performance of our proposed algorithms is demonstrated through the application to two simulated datasets and two real-world gene expression datasets generated by microarray and RNA-Seq technologies and comparisons to existing methods such as crude permutations and SAMC, and the results show that our approaches can achieve orders of magnitude of computational efficiency gains in estimating small p -values. Our approaches offer promising solutions for the improvement of computational efficiencies of existing permutation test procedures and the development of new testing methods using permutations in genomic data analysis.
Type of Medium:
Online Resource
ISSN:
2194-6302
,
1544-6115
DOI:
10.1515/sagmb-2021-0067
Language:
English
Publisher:
Walter de Gruyter GmbH
Publication Date:
2023
detail.hit.zdb_id:
2115012-6