In:
BIO Integration, Compuscript, Ltd., Vol. 2, No. 2 ( 2021-07-16), p. 50-56
Abstract:
Abstract Antimicrobial peptides (AMPs) have emerged as promising alternatives of traditional antibiotics against drug-resistant bacteria owing to their broad-spectrum antimicrobial properties and low tendency to drug resistance. However, their therapeutic efficacy in vivo,
especially for infections in deep organs, is limited owing to their systemic toxicity and low bioavailability. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing proteolysis, increasing the accumulation at infection sites, and reducing toxicity. Herein, we will discuss the current progress of using nanoparticles as delivery vehicles for AMPs for the treatment of deep infections. Statement of significance Antimicrobial peptides (AMPs) are rarely directly used to treat deep infections due to their systemic toxicity
and low bioavailability. This review summarizes recent progress that researchers employed nanoparticles-based delivery systems to deliver AMPs for the treatment of deep infections. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing proteolysis, increasing the accumulation at infection sites, and reducing toxicity. Especially, the development of intelligent nanocarriers can achieve selective activation and active target in the infectious sites, thus improving the therapeutic efficacy against bacterial infection and reducing
the toxicity against normal tissues.
Type of Medium:
Online Resource
ISSN:
2712-0074
DOI:
10.15212/bioi-2021-0003
Language:
English
Publisher:
Compuscript, Ltd.
Publication Date:
2021
detail.hit.zdb_id:
3076462-2