Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Society for Neuroscience ; 2022
    In:  The Journal of Neuroscience Vol. 42, No. 3 ( 2022-01-19), p. 443-453
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 42, No. 3 ( 2022-01-19), p. 443-453
    Abstract: The hippocampus is a locus of working memory (WM) with anterior and posterior subregions that differ in their transcriptional and external connectivity patterns. However, the involvement and functional connections between these subregions in WM processing are poorly understood. To address these issues, we recorded intracranial EEG from the anterior and the posterior hippocampi in humans (seven females and seven males) who maintained a set of letters in their WM. We found that WM maintenance was accompanied by elevated low-frequency activity in both the anterior and posterior hippocampus and by increased theta/alpha band (3–12 Hz) phase synchronization between anterior and posterior subregions. Cross-frequency and Granger prediction analyses consistently showed that the correct WM trials were associated with theta/alpha band-coordinated unidirectional influence from the posterior to the anterior hippocampus. In contrast, WM errors were associated with bidirectional interactions between the anterior and posterior hippocampus. These findings imply that theta/alpha band synchrony within the hippocampus may support successful WM via a posterior to anterior influence. A combination of intracranial recording and a fine-grained atlas may be of value in understanding the neural mechanisms of WM processing. SIGNIFICANCE STATEMENT Working memory (WM) is crucial to everyday functioning. The hippocampus has been proposed to be a subcortical node involved in WM processes. Previous studies have suggested that the anterior and posterior hippocampi differ in their external connectivity patterns and gene expression. However, it remains unknown whether and how human hippocampal subregions are recruited and coordinated during WM tasks. Here, by recording intracranial electroencephalography simultaneously from both hippocampal subregions, we found enhanced power in both areas and increased phase synchronization between them. Furthermore, correct WM trials were associated with a unidirectional influence from the posterior to the anterior hippocampus, whereas error trials were correlated with bidirectional interactions. These findings indicate a long-axis specialization in the human hippocampus during WM processing.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2022
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages