Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Society for Neuroscience ; 2008
    In:  The Journal of Neuroscience Vol. 28, No. 7 ( 2008-02-13), p. 1568-1579
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 28, No. 7 ( 2008-02-13), p. 1568-1579
    Abstract: Extracellular proteolysis plays an essential role in synaptic remodeling that is indispensable for cognitive function. The extracellular serine protease neurotrypsin was implicated in cognitive function, because humans lacking a functional form of neurotrypsin suffer from severe mental retardation. By immunoelectron microscopy, neurotrypsin has been localized to presynaptic terminals, suggesting a local proteolytic function after its synaptic release. Here, we studied axonal trafficking and synaptic exocytosis of neurotrypsin by live imaging of hippocampal neurons expressing neurotrypsin fused with enhanced green fluorescent protein or its pH-sensitive variant, superecliptic pHluorin. In differentiated neurons, we identified neurotrypsin in mobile transport vesicles along axons and in both an intracellular and an extracellular pool at synapses. Short depolarization triggered rapid synaptic exocytosis of neurotrypsin. Once externalized, neurotrypsin lingered at its synaptic release site for several minutes before it disappeared. Cell depolarization also enhanced synaptic capture of intracellular neurotrypsin transport vesicles, and elevated synaptic activity increased both number and motility of mobile axonal neurotrypsin vesicles. We further observed trading of neurotrypsin vesicles between adjacent synapses. These activities may support the replenishment of neurotrypsin after activity-induced synaptic exocytosis. Together, the activity-dependent recruitment of neurotrypsin to synapses and its exocytosis and transient persistence at its synaptic release site argue for a spatially and temporally restricted proteolytic action at the synapse. Thereby, neurotrypsin may play a role in activity-dependent remodeling of the synaptic circuitry that is key to adaptive synaptic changes in the context of cognitive functions, such as learning and memory.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2008
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages