Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 30, No. 9 ( 2010-03-03), p. 3419-3431
    Kurzfassung: Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca 2+ -activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient ( Gsn −/− ) mice as a model system for actin filament stabilization. In Gsn −/− mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro , gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca 2+ ] i increases and exocytotic neurotransmitter release were enhanced in Gsn −/− synaptosomes. Importantly, treatment of Gsn −/− synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca 2+ influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn −/− brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn −/− mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca 2+ influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn −/− hippocampus is associated with a special vascular niche for neurogenesis.
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2010
    ZDB Id: 1475274-8
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz