Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2011
    In:  MRS Proceedings Vol. 1316 ( 2011)
    In: MRS Proceedings, Springer Science and Business Media LLC, Vol. 1316 ( 2011)
    Abstract: Rosette nanotubes (RNTs) are obtained through the self-organization of biologically inspired self-complementary guanine-cytosine modules (G∧C motif) under physiological conditions. These architectures can express bioactive molecules on their surface by functionalizing the G∧C motif prior to self-assembly. As a result, RNTs are promising drug delivery vehicles for the treatment of diseases such as cancer and inflammatory disorders. Towards these studies, we have explored the toxicity and immunological response of RNTs and are now focused on understanding their cellular uptake, biological distribution and kinetics in vivo . For these investigations, we need to construct a RNT labeled with a radionuclide that can be followed in vivo by SPECT (single photon emission computed tomography) imaging. In this proceeding, we describe a twin G∧C motif that is functionalized with mercaptoacetyl triglycine (MAG 3 ). This is a well known ligand which is able to form a stable chelate with the radionuclides 99m Tc or 186/188 Re. In order to develop the chemistry for this radiolabeling strategy for the RNTs, we demonstrate the chelation of the MAG 3 functionalized twin-G∧C motif with cold rhenium and investigate the self-assembly properties of the complex into RNTs under aqueous conditions.
    Type of Medium: Online Resource
    ISSN: 0272-9172 , 1946-4274
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages