Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications) ; 2019
    In:  Tạp chí Khoa học và Công nghệ biển Vol. 18, No. 4 ( 2019-03-15), p. 406-412
    In: Tạp chí Khoa học và Công nghệ biển, Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications), Vol. 18, No. 4 ( 2019-03-15), p. 406-412
    Abstract: In the context of sources for natural products discovery are going scarcer, exploiting biotechnologically potential compounds from marine microbial symbionts is considered a relatively new trend. In our study a total of fifteen fungal strains were isolated from marine algal samples belonging to species Kappaphycus cottonii, K. striatus, Gracilaria eucheumatoides and Betaphycus gelatinus collected in Nha Trang in 2017. The in vitro biological activities, including antimicrobial, cytotoxic and hemolytic activities of ethyl acetate extracts of the fungal strains were determined. From fifteen fungal extracts, six displayed antimicrobial activity against at least one test strain. At 20 μg.ml-1, four fungal extracts were found to express cytotoxic activity on two human cancer cell lines hepatocellular carcinoma (Hep-G2) and breast adenocarcinoma (MCF-7), with G. eucheumatoides being the source of the highest number of producer strains. Hemolytic activity was observed in rabbit erythrocytes under almost all fungal extracts’ effect. No apparent relationship was observed between the biological activities of fungal isolates. The biological assessments uncovered several fungal candidates, such as Bge-1.1, Kco-2.1 and Geu-1.1 with relatively potent antimicrobial and cytotoxic activities while expressing less hemolytic effect at concentrations from 20 μg.ml-1 to 200 μg.ml-1. The results evidenced the potential of exploiting natural products from associated marine microorganisms, especially those for the purpose of pharmaceutical applications.
    Type of Medium: Online Resource
    ISSN: 1859-3097 , 1859-3097
    Language: Unknown
    Publisher: Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages