Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Association for the Advancement of Artificial Intelligence (AAAI) ; 2017
    In:  Proceedings of the AAAI Conference on Artificial Intelligence Vol. 31, No. 1 ( 2017-02-12)
    In: Proceedings of the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Vol. 31, No. 1 ( 2017-02-12)
    Abstract: Understanding the nature of dark energy, the mysterious force driving the accelerated expansion of the Universe, is a major challenge of modern cosmology. The next generation of cosmological surveys, specifically designed to address this issue, rely on accurate measurements of the apparent shapes of distant galaxies. However, shape measurement methods suffer from various unavoidable biases and therefore will rely on a precise calibration to meet the accuracy requirements of the science analysis. This calibration process remains an open challenge as it requires large sets of high quality galaxy images. To this end, we study the application of deep conditional generative models in generating realistic galaxy images. In particular we consider variations on conditional variational autoencoder and introduce a new adversarial objective for training of conditional generative networks. Our results suggest a reliable alternative to the acquisition of expensive high quality observations for generating the calibration data needed by the next generation of cosmological surveys.
    Type of Medium: Online Resource
    ISSN: 2374-3468 , 2159-5399
    Language: Unknown
    Publisher: Association for the Advancement of Artificial Intelligence (AAAI)
    Publication Date: 2017
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages