Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Association for the Advancement of Artificial Intelligence (AAAI) ; 2020
    In:  Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, No. 05 ( 2020-04-03), p. 8722-8731
    In: Proceedings of the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Vol. 34, No. 05 ( 2020-04-03), p. 8722-8731
    Kurzfassung: The recent explosion in question answering research produced a wealth of both factoid reading comprehension (RC) and commonsense reasoning datasets. Combining them presents a different kind of task: deciding not simply whether information is present in the text, but also whether a confident guess could be made for the missing information. We present QuAIL, the first RC dataset to combine text-based, world knowledge and unanswerable questions, and to provide question type annotation that would enable diagnostics of the reasoning strategies by a given QA system. QuAIL contains 15K multi-choice questions for 800 texts in 4 domains. Crucially, it offers both general and text-specific questions, unlikely to be found in pretraining data. We show that QuAIL poses substantial challenges to the current state-of-the-art systems, with a 30% drop in accuracy compared to the most similar existing dataset.
    Materialart: Online-Ressource
    ISSN: 2374-3468 , 2159-5399
    Sprache: Unbekannt
    Verlag: Association for the Advancement of Artificial Intelligence (AAAI)
    Publikationsdatum: 2020
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz