Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Association for the Advancement of Artificial Intelligence (AAAI) ; 2023
    In:  Proceedings of the AAAI Conference on Artificial Intelligence Vol. 37, No. 7 ( 2023-06-26), p. 8360-8368
    In: Proceedings of the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Vol. 37, No. 7 ( 2023-06-26), p. 8360-8368
    Abstract: Vision transformers (ViTs) have recently obtained success in many applications, but their intensive computation and heavy memory usage at both training and inference time limit their generalization. Previous compression algorithms usually start from the pre-trained dense models and only focus on efficient inference, while time-consuming training is still unavoidable. In contrast, this paper points out that the million-scale training data is redundant, which is the fundamental reason for the tedious training. To address the issue, this paper aims to introduce sparsity into data and proposes an end-to-end efficient training framework from three sparse perspectives, dubbed Tri-Level E-ViT. Specifically, we leverage a hierarchical data redundancy reduction scheme, by exploring the sparsity under three levels: number of training examples in the dataset, number of patches (tokens) in each example, and number of connections between tokens that lie in attention weights. With extensive experiments, we demonstrate that our proposed technique can noticeably accelerate training for various ViT architectures while maintaining accuracy. Remarkably, under certain ratios, we are able to improve the ViT accuracy rather than compromising it. For example, we can achieve 15.2% speedup with 72.6% (+0.4) Top-1 accuracy on Deit-T, and 15.7% speedup with 79.9% (+0.1) Top-1 accuracy on Deit-S. This proves the existence of data redundancy in ViT. Our code
is released at https://github.com/ZLKong/Tri-Level-ViT
    Type of Medium: Online Resource
    ISSN: 2374-3468 , 2159-5399
    Language: Unknown
    Publisher: Association for the Advancement of Artificial Intelligence (AAAI)
    Publication Date: 2023
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages