Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2023
    In:  Journal of the American Society of Nephrology Vol. 34, No. 7 ( 2023-7), p. 1179-1190
    In: Journal of the American Society of Nephrology, Ovid Technologies (Wolters Kluwer Health), Vol. 34, No. 7 ( 2023-7), p. 1179-1190
    Abstract: Thiazide diuretics (thiazides) are among the most widely prescribed drugs worldwide, but their use is associated with glucose intolerance and new-onset diabetes mellitus. The molecular mechanisms remain elusive. Our study reveals that thiazides attenuate insulin secretion through inhibition of the mitochondrial carbonic anhydrase isoform 5b (CA5b) in pancreatic β cells. We furthermore discovered that pancreatic β cells express only one functional carbonic anhydrase isoform, CA5b, which is critical in replenishing oxaloacetate in the mitochondrial tricarboxylic acid (TCA) cycle (anaplerosis). These findings explain the mechanism for thiazide-induced glucose intolerance and reveal a fundamental role of CA5b in TCA cycle anaplerosis and insulin secretion in β cells. Background Thiazide diuretics are associated with glucose intolerance and new-onset diabetes mellitus. Previous studies demonstrated that thiazides attenuate insulin secretion, but the molecular mechanisms remain elusive. We hypothesized that thiazides attenuate insulin secretion via one of the known molecular thiazide targets in β cells. Methods We performed static insulin secretion experiments with islets of wild-type, Sodium/chloride co-transporter (NCC) (SLC12A3), and sodium-driven chloride/bicarbonate exchanger (NDCBE) (SLC4A8) knock-out (KO) mice and with murine Min6 cells with individual knockdown of carbonic anhydrase (CA) isoforms to identify the molecular target of thiazides in β cells. CA isoform 5b (CA5b) KO mice were then used to assess the role of the putative thiazide target CA5b in β -cell function and in mediating thiazide sensitivity in vitro and in vivo . Results Thiazides inhibited glucose- and sulfonylurea-stimulated insulin secretion in islets and Min6 cells at pharmacologically relevant concentrations. Inhibition of insulin secretion by thiazides was CO 2 /HCO 3 − -dependent, not additive to unselective CA inhibition with acetazolamide, and independent of extracellular potassium. By contrast, insulin secretion was unaltered in islets of mice lacking the known molecular thiazide targets NCC or NDCBE. CA expression profiling with subsequent knockdown of individual CA isoforms suggested mitochondrial CA5b as a molecular target. In support of these findings, thiazides significantly attenuated Krebs cycle anaplerosis through reduction of mitochondrial oxaloacetate synthesis. CA5b KO mice were resistant to thiazide-induced glucose intolerance, and thiazides did not alter insulin secretion in CA5b KO islets. Conclusions Thiazides attenuate insulin secretion via inhibition of the mitochondrial CA5b isoform in β cells of mice.
    Type of Medium: Online Resource
    ISSN: 1046-6673 , 1533-3450
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2029124-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages