Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Energy Materials, OAE Publishing Inc., Vol. 2, No. 4 ( 2022), p. 200025-
    Abstract: Ambient heat, slightly above or at room temperature, is a ubiquitous and inexhaustible energy source that has typically been ignored due to difficulties in its utilization. Recent evidence suggests that a class of azobenzene (Azo) photoswitches featuring a reversible photoinduced crystal-to-liquid transition could co-harvest photon energy and ambient heat. Thus, a new horizon has been opened for recovering and regenerating low-grade ambient heat. Here, a series of unilateral para-functionalized photoinduced liquefiable Azo derivatives is presented that can co-harvest and convert photon energy and ambient heat into chemical bond energy and latent heat in molecules and eventually release them in the form of high-temperature utilizable heat. A straightforward crystalline-to-liquid phase transition achieved with ultraviolet light irradiation (365 nm) is enabled by appending a halogen/alkoxy group on the para-position of the Azo photoswitches, and the release of thermal energy is triggered by short-wavelength visible-light irradiation (420 nm). The phase transition properties of the trans- and cis-isomers and the energy density, storage lifetime and heat release performance of the cis-liquid are investigated with differential scanning calorimetry, ultraviolet-visible absorption spectroscopy, and an infrared (IR) thermal camera. The experimental results indicate a high energy density of 335 J/g, a long lifetime of 5 d and a heat release of up to 6.3 °C due to the coupled photochemical-thermophysical mechanism. This work presents a new model for utilizing renewable energy, i.e., the photoinduced conversion of ambient thermal energy.
    Type of Medium: Online Resource
    ISSN: 2770-5900
    Language: Unknown
    Publisher: OAE Publishing Inc.
    Publication Date: 2022
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages