Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    OAE Publishing Inc. ; 2023
    In:  Journal of Materials Informatics Vol. 3, No. 2 ( 2023), p. 13-
    In: Journal of Materials Informatics, OAE Publishing Inc., Vol. 3, No. 2 ( 2023), p. 13-
    Abstract: High optical transmittance (T%) has always been an important indicator of transparent-ferroelectric ceramics for optoelectronic coupling. However, the pathway of pursuing high transparency has been at the experimental trial-and-error stage over the past decades, manifesting major drawbacks of being time-consuming and resource-wasting. The present work introduces a machine learning (ML) accelerated development of highly transparent-ferroelectrics by taking potassium-sodium niobate (KNN)-based ceramics as the model material. It is highlighted that by using a small data set of 118 sample data and four key features, we predict the T% of un-synthesized KNN-based ceramics and evaluate the importance of key features. Meanwhile, the screened (K0.5Na0.5)0.956Tb0.004Ba0.04NbO3 ceramics were successfully realized by the conventional solid-state synthesis, and the experimental measured T% is in full agreement with the predicted results, exhibiting a satisfactory high T% of ~78% at 800 nm. In addition, ML is also used to explore the best experimental parameters, and the prediction results of T% are particularly sensitive to changes in sintering temperature (ST). Eventually, the predicted optimal ST is highly consistent with the experimental one. This study constructs a new avenue for exploring high T% ferroelectric KNN ceramics based on ML, ascertaining optimal process parameters, and guiding the development of other transparent-ferroelectrics in optoelectronic fields.
    Type of Medium: Online Resource
    ISSN: 2770-372X
    Language: Unknown
    Publisher: OAE Publishing Inc.
    Publication Date: 2023
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages