Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Macedonian Academy of Sciences and Arts ; 2017
    In:  Contributions, Section of Natural, Mathematical and Biotechnical Sciences Vol. 31, No. 1-2 ( 2017-03-09)
    In: Contributions, Section of Natural, Mathematical and Biotechnical Sciences, Macedonian Academy of Sciences and Arts, Vol. 31, No. 1-2 ( 2017-03-09)
    Kurzfassung: A b s t r a c t: This paper proposes to use approximate instead of exact stochastic simulation algorithms for approximate Bayesian parameter inference of dynamical systems in systems biology. It first presents the mathematical framework for the description of systems biology models, especially from the aspect of a stochastic formulation as opposed to deterministic model formulations based on the law of mass action. In contrast to maximum likelihood methods for parameter inference, approximate inference methodsare presented which are based on sampling parameters from a known prior probability distribution, which gradually evolves tward a posterior distribution, through the comparison of simulated data from the model to a given data set of measurements. The paper then discusses the simulation process, where an overview is given of the different exact and approximate methods for stochastic simulation and their improvements that we propose. The exact and approximate simulators are implemented and used within approximate Bayesian parameter inference methods. Our evaluation of these methods on two tasks of parameter estimation in two different models shows that equally good results are obtained much faster when using approximate simulation as compared to using exact simulation.
    Materialart: Online-Ressource
    ISSN: 1857-9949 , 1857-9027
    Sprache: Unbekannt
    Verlag: Macedonian Academy of Sciences and Arts
    Publikationsdatum: 2017
    ZDB Id: 2829938-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz