Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2020
    In:  Combinatorial Chemistry & High Throughput Screening Vol. 23, No. 3 ( 2020-05-19), p. 225-231
    In: Combinatorial Chemistry & High Throughput Screening, Bentham Science Publishers Ltd., Vol. 23, No. 3 ( 2020-05-19), p. 225-231
    Abstract: Halogenated corticosteroids are widely used in medicine, and the global need of these steroidal APIs is estimated to be 40 – 70 tons, annually. Vietnam currently imports the pharmaceutical compounds up to 90%, in particular 100% of steroidal drugs. Currently, industrial production is based on the chemical syntheses of corticosteroids from either 16- dehydropregnenolone acetate (obtained from diosgenin) or androstenedione (obtained from phytosterol). The development of shorter synthetic schemes and more economically feasible technologies is of great significance. Introduction of 1(2)-double bond at the final stages of the corticosteroids synthesis results inpoor yield. 21-Acetoxypregna-1,4,9(11),16-tetraene-3,20-dione (tetraene acetate) is a key intermediate in the synthesis of highly active halogenated corticosteroids such as dexamethasone and other halogenated corticosteroids. 21-acetoxypregna-1,4,9(11),16- tetraene-3,20-dione is a key intermediate in the synthesis of dexamethasone from the readily available and cheap 9α-hydroxyandrost-4-ene-3,17-dione. Objective: The purpose of this study was the development of an efficient and shorter procedure for the synthesis of 21-acetoxypregna-1,4,9(11),16-tetraene-3,20-dione from 9α-hydroxyandrostenedione, which is a product of a bio-oxidative degradation of the side chain of phytosterols. Methods: Pregnane side chain was constructed using cyanohydrin method. For 1(2)- dehydrogenation, selene dioxide was applied for the introduction of Δ1(2)-double bond. Other stages of the synthesis were epimerization, Stork’s iodination procedure and dehydration. Result: 21-Acetoxypregna-1,4,9(11),16-tetraene-3,20-dione was prepared from 9α- hydroxyandrostenedione in yield more than 46%. Conclusion: An efficient and practically feasible procedure for the synthesis of 21-acetoxypregna- 1,4,9(11),16-tetraene-3,20-dione from 9α-hydroxyandrostenedione, a key intermediate for the synthesis of 9-haloidated corticoids, has been developed. The procedure can be applied for the production of value-added 9-haloidated corticoids.
    Type of Medium: Online Resource
    ISSN: 1386-2073
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2020
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages