Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2022
    In:  Medicinal Chemistry Vol. 18, No. 4 ( 2022-05), p. 484-496
    In: Medicinal Chemistry, Bentham Science Publishers Ltd., Vol. 18, No. 4 ( 2022-05), p. 484-496
    Abstract: Cycle-regulating and transcriptional cyclin-dependent kinases (CDKs) are attractive targets in cancer drug development. Several CDK inhibitors have already been obtained or are close to regulatory approval for clinical applications. Objective: Phenylazopyrazole CAN508 has been described as the first selective CDK9 inhibitor with an IC50 of 350 nM. Since the azo-moiety is not a suitable functionality for drugs due to pharmacological reasons, the preparation of carbo-analogues of CAN508 with similar biological activities is desirable. The present work is focused on the synthesis of carbo-analogues similar to CAN508 and their CDK inhibition activity. Methods: Herein, the synthesis of 21 novel carbo analogues of CAN508 and their intermediates is reported. Subsequently, target compounds 8a - 8u were evaluated for protein kinase inhibition (CDK2/cyclin E, CDK4/cyclin D, CDK9/cyclin T) and antiproliferative activities in cell lines (K562, MCF-7, MV4-11). Moreover, the binding mode of derivative 8s in the active site of CDK9 was modelled. Results: Compounds 8a - 8u were obtained from key intermediate 7, which was prepared by linear synthesis involving Vilsmeier-Haack, Knoevenagel, Hunsdiecker, and Suzuki-Miyaura reactions. Styrylpyrazoles 8t and 8u were the most potent CDK9 inhibitors with IC50 values of approximately 1 μM. Molecular modelling suggested binding in the active site of CDK9. The flow cytometric analysis of MV4-11 cells treated with the most active styrylpyrazoles showed a significant G1-arrest. Conclusion: The prepared styrylpyrazoles showed inhibition activity towards CDKs and can provide a novel chemotype of kinase inhibitors.
    Type of Medium: Online Resource
    ISSN: 1573-4064
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2022
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages