In:
The Open Cardiovascular Medicine Journal, Bentham Science Publishers Ltd., Vol. 11, No. 1 ( 2017-12-19), p. 133-145
Kurzfassung:
Cardiac resynchronization therapy (CRT) has become a mainstay in the management of heart failure. Up to one-third of patients who received resynchronization devices do not experience the full benefits of CRT. The clinical factors influencing the likelihood to respond to the therapy are wide QRS complex, left bundle branch block, female gender, non-ischaemic cardiomyopathy (highest responders), male gender, ischaemic cardiomyopathy (moderate responders) and narrow QRS complex, non-left bundle branch block (lowest, non-responders). Objective: This review provides a conceptual description of the role of echocardiography in the optimization of CRT. Method: A literature survey was performed using PubMed database search to gather information regarding CRT and echocardiography. Results: A total of 70 studies met selection criteria for inclusion in the review. Echocardiography helps in the initial selection of the patients with dyssynchrony, which will benefit the most from optimal biventricular pacing and provides a guide to left ventricular (LV) lead placement during implantation. Different echocardiographic parameters have shown promise and can offer the possibility of patient selection, response prediction, lead placement optimization strategies and optimization of device configurations. Conclusion: LV ejection fraction along with specific electrocardiographic criteria remains the cornerstone of CRT patient selection. Echocardiography is a non-invasive, cost-effective, highly reproducible method with certain limitations and accuracy that is affected by measurement errors. Echocardiography can assist with the identification of the appropriate electromechanical substrate of CRT response and LV lead placement. The targeted approach can improve the haemodynamic response, as also the patient-specific parameters estimation.
Materialart:
Online-Ressource
ISSN:
1874-1924
DOI:
10.2174/1874192401711010133
Sprache:
Englisch
Verlag:
Bentham Science Publishers Ltd.
Publikationsdatum:
2017
ZDB Id:
2430362-8
ZDB Id:
2396047-4