Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Laser Applications, Laser Institute of America, Vol. 34, No. 4 ( 2022-11-01)
    Abstract: Joining dissimilar metals with superior quality is important to provide tailored, lightweight, and cost-efficient components. Expensive and durable materials are exceptionally used where the cheaper material would not withstand the requirements. With laser beam welding, dissimilar metals can already be joined with high precision, low heat input, and a customizable mixing degree. Introducing ultrasonic excitation into the weld pool is a promising approach for further improvements like customizing the solidification morphology and avoiding weld defects. The experiments are carried out with round bars of 30 mm diameter made of 1.4301 steel alloy and 2.4856 nickel base alloy. Ultrasonic-assisted laser beam butt welding is conducted on rotating specimens with a laser beam power of 7.75 kW and a welding speed of 0.95 m/min. The specimens are evaluated by metallographic cross sections, hardness measurements, and energy-dispersive x-ray spectroscopy (EDX). The ultrasound is used to excite an eigenmode of the sample and the weld position is varied at stress- and displacement-nodes. Two different mechanisms of acoustic grain refinement are revealed. Heterogeneous nucleation is fostered in weld seams that are positioned in stress-nodes, and the fragmentation of dendrites is fostered in displacement-nodes. The welds' chemical compositions correspond to the change of solidification morphology.
    Type of Medium: Online Resource
    ISSN: 1042-346X , 1938-1387
    Language: English
    Publisher: Laser Institute of America
    Publication Date: 2022
    detail.hit.zdb_id: 2084611-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages