Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    SAGE Publications ; 2015
    In:  Transportation Research Record: Journal of the Transportation Research Board Vol. 2528, No. 1 ( 2015-01), p. 86-95
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications, Vol. 2528, No. 1 ( 2015-01), p. 86-95
    Kurzfassung: The lack of some traffic flow data seriously affects the quality of data collection and analysis in the traffic system. Completing the missing data is one of the most important steps in achieving the functions of intelligent transportation systems. In this paper an approach based on fuzzy C-means (FCM) imputes missing traffic volume data in loop detectors. With spatial–temporal correlation between detectors, the conventional vector-based data structure is first transformed into a matrix-based data pattern. Then, the genetic algorithm is applied to optimize the parameters of cluster size and weighting factor in the FCM model. Finally, the actual traffic flow volume collected at different locations is designed as a testing data set, and two indicators including root mean square error and relative accuracy are used to evaluate the imputation performance of the proposed method by comparison with some conventional methods (multiple linear regression, autoregressive integrated moving average model, and average historical method) by missing ratio. The applications in four scenarios demonstrate that the FCM-based imputation method outperforms conventional methods.
    Materialart: Online-Ressource
    ISSN: 0361-1981 , 2169-4052
    Sprache: Englisch
    Verlag: SAGE Publications
    Publikationsdatum: 2015
    ZDB Id: 2403378-9
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz