Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    SAGE Publications ; 2017
    In:  Transportation Research Record: Journal of the Transportation Research Board Vol. 2603, No. 1 ( 2017-01), p. 1-12
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications, Vol. 2603, No. 1 ( 2017-01), p. 1-12
    Kurzfassung: At the airfield in hub airports, many activities occur that involve a range of participants, including various-size aircraft, ground vehicles, and workers. The safety management system is FAA's approach for systematically managing aviation safety. A major component of the safety management system is safety risk management (SRM), which entails analysis, assessment, and control of safety risks, including risks on the airfield. Current SRM has few specific safety models to estimate the likelihood or frequency of risks. This paper presents an example for development and incorporation of safety models into SRM. Specifically, it discusses safety models for runway incursion that use the following variables: total and general aviation operations, length of runway by type, number of taxiway intersections, snowfall, precipitation, number of hot spots, and construction activity. Categorization and processing of data were significant because each variable used could take on multiple forms, and some types of data involved review of airfield diagrams. The data used were from 137 U.S. hub airports for 2009 through 2014. For modeling, the negative multinomial distribution was used because it proved suitable for representing overdispersed data such as runway incursion frequency. Performance of the models was assessed through the goodness-of-fit measures of log likelihood, overdispersion, and cumulative residual plots. Models were developed for five severity categories of runway incursions and three types of surface events. The safety modeling approach presented here can serve as a foundation for development of other safety models that can be integrated into SRM to enable quantitative analysis of safety risks.
    Materialart: Online-Ressource
    ISSN: 0361-1981 , 2169-4052
    Sprache: Englisch
    Verlag: SAGE Publications
    Publikationsdatum: 2017
    ZDB Id: 2403378-9
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz