Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2020
    In:  Journal of Neurosurgery Vol. 133, No. 1 ( 2020-07), p. 100-106
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 133, No. 1 ( 2020-07), p. 100-106
    Abstract: There is a need for real-time, intraoperative tissue identification technology in neurosurgery. Several solutions are under development for that purpose, but their adaptability for standard clinical use has been hindered by high cost and impracticality issues. The authors tested and preliminarily validated a method for brain tumor identification that is based on the analysis of diathermy smoke using differential mobility spectrometry (DMS). METHODS A DMS connected to a special smoke sampling system was used to discriminate brain tumors and control samples ex vivo in samples from 28 patients who had undergone neurosurgical operations. They included meningiomas (WHO grade I), pilocytic astrocytomas (grade I), other low-grade gliomas (grade II), glioblastomas (grade IV), CNS metastases, and hemorrhagic or traumatically damaged brain tissue as control samples. Original samples were cut into 694 smaller specimens in total. RESULTS An overall classification accuracy (CA) of 50% (vs 14% by chance) was achieved in 7-class classification. The CA improved significantly (up to 83%) when the samples originally preserved in Tissue-Tek conservation medium were excluded from the analysis. The CA further improved when fewer classes were used. The highest binary classification accuracy, 94%, was obtained in low-grade glioma (grade II) versus control. CONCLUSIONS The authors’ results show that surgical smoke from various brain tumors has distinct DMS profiles and the DMS analyzer connected to a special sampling system can differentiate between tumorous and nontumorous tissue and also between different tumor types ex vivo.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2020
    detail.hit.zdb_id: 2026156-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages