Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Experimental Biology and Medicine, SAGE Publications, Vol. 233, No. 5 ( 2008-05), p. 558-574
    Abstract: Accumulating evidence links calcium-overload and oxidative stress to atrial remodeling during atrial fibrillation (AF). Furthermore, atrial remodeling appears to increase atrial thrombogeneity, characterized by increased expression of adhesion molecules. The aim of this study was to assess mitochondrial dysfunction and oxidative stress–activated signal transduction (nuclear factor-κB [NF-κB], lectin-like oxidized low-density lipoprotein receptor [LOX-1] , intercellular adhesion molecule-1 [ICAM-1], and hemeoxgenase-1 [HO-1] ) in atrial tissue during AF. Ex vivo atrial tissue from patients with and without AF and, additionally, rapid pacing of human atrial tissue slices were used to study mitochondrial structure by electron microscopy and mitochondrial respiration. Furthermore, quantitative reverse transcription polymerase chain reaction (RT-PCR), immunoblot analyses, gel-shift assays, and enzyme-linked immunosorbent assay (ELISA) were applied to measure nuclear amounts of NF-κB target gene expression. Using ex vivo atrial tissue samples from patients with AF we demonstrated oxidative stress and impaired mitochondrial structure and respiration, which was accompanied by nuclear accumulation of NF-κB and elevated expression levels of the adhesion molecule ICAM-1 and the oxidative stress-induced markers HO-1 and LOX-1. All these changes were reproduced by rapid pacing for 24 hours of human atrial tissue slices. Furthermore, the blockade of calcium inward current with verapamil effectively prevented both the mitochondrial changes and the activation of NF-κB signaling and target gene expression. The latter appeared also diminished by the antioxidants apocynin and resveratrol (an inhibitor of NF-κB), or the angiotensin II receptor type 1 antagonist, olmesartan. This study demonstrates that calcium inward current via L-type calcium channels contributes to oxidative stress and increased expression of oxidative stress markers and adhesion molecules during cardiac tachyarrhythmia.
    Type of Medium: Online Resource
    ISSN: 1535-3702 , 1535-3699
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2008
    detail.hit.zdb_id: 2020856-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages