Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microbiology & Infectious Diseases, SciVision Publishers LLC, Vol. 5, No. 1 ( 2021-02-28)
    Abstract: Authors: Valentina L. Kouznetsova, Caroline Kellogg, Aidan Zhang, Mahidhar Tatineni, Mark A. Miller, Igor F. Tsigelny Background: SARS-CoV-2 has caused tens of millions of infections worldwide and millions of deaths. Currently, no effective treatment has been identified against the virus. Of its viral proteins, the RNA-dependent RNA polymerase (RdRp) is a promising target for drug design because of its importance in the replication of the virus. Material and Methods: After the identification of an RdRp pocket site based on the crystal structure of the RdRp– nsp7–nsp8 complex and the triphosphate form of remdesivir (PDB ID: 7BV2), we created a pharmacophore model consisting of 11 different features. These features include two acceptors, three donors, one acceptor and donor, three donor or acceptor, and one hydrophobic; an excluded volume of R=1.1 Å was also added. We then ran a pharmacophore search on our conformational database (DB) of approximately 2500 FDA-approved drugs and 600 000 conformations to identify potential drug-candidates. To determine the drugs that bound the best, we conducted multi conformational docking of these results to the previously identified pocket site. Results: The pharmacophore search found 315 different potential inhibitors of RdRp, of which 85 were chosen based on the number of H-bonds and hydrophobic interactions in the best docking pose. Several of the drugs selected, including ritonavir, dasatinib, imatinib, and sofosbuvir, have previously been shown to be effective against other viruses. Conclusions: These findings highlight compounds that could lead to both in vitro and in vivo studies to identify potential treatments against SARS-CoV-2.
    Type of Medium: Online Resource
    ISSN: 2639-9458
    Language: Unknown
    Publisher: SciVision Publishers LLC
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages