In:
Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 9 ( 2022-10-12)
Abstract:
Preeclampsia, one of the leading causes of maternal and fetal morbidity and mortality, demands accurate predictive models for the lack of effective treatment. Predictive models based on machine learning algorithms demonstrate promising potential, while there is a controversial discussion about whether machine learning methods should be recommended preferably, compared to traditional statistical models. Methods We employed both logistic regression and six machine learning methods as binary predictive models for a dataset containing 733 women diagnosed with preeclampsia. Participants were grouped by four different pregnancy outcomes. After the imputation of missing values, statistical description and comparison were conducted preliminarily to explore the characteristics of documented 73 variables. Sequentially, correlation analysis and feature selection were performed as preprocessing steps to filter contributing variables for developing models. The models were evaluated by multiple criteria. Results We first figured out that the influential variables screened by preprocessing steps did not overlap with those determined by statistical differences. Secondly, the most accurate imputation method is K-Nearest Neighbor, and the imputation process did not affect the performance of the developed models much. Finally, the performance of models was investigated. The random forest classifier, multi-layer perceptron, and support vector machine demonstrated better discriminative power for prediction evaluated by the area under the receiver operating characteristic curve, while the decision tree classifier, random forest, and logistic regression yielded better calibration ability verified, as by the calibration curve. Conclusion Machine learning algorithms can accomplish prediction modeling and demonstrate superior discrimination, while Logistic Regression can be calibrated well. Statistical analysis and machine learning are two scientific domains sharing similar themes. The predictive abilities of such developed models vary according to the characteristics of datasets, which still need larger sample sizes and more influential predictors to accumulate evidence.
Type of Medium:
Online Resource
ISSN:
2297-055X
DOI:
10.3389/fcvm.2022.959649
DOI:
10.3389/fcvm.2022.959649.s001
DOI:
10.3389/fcvm.2022.959649.s002
DOI:
10.3389/fcvm.2022.959649.s003
DOI:
10.3389/fcvm.2022.959649.s004
DOI:
10.3389/fcvm.2022.959649.s005
DOI:
10.3389/fcvm.2022.959649.s006
DOI:
10.3389/fcvm.2022.959649.s007
DOI:
10.3389/fcvm.2022.959649.s008
DOI:
10.3389/fcvm.2022.959649.s009
Language:
Unknown
Publisher:
Frontiers Media SA
Publication Date:
2022
detail.hit.zdb_id:
2781496-8