Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Ecology and Evolution Vol. 9 ( 2021-5-4)
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 9 ( 2021-5-4)
    Abstract: The soil system has been frequently overlooked during plant reintroduction planning and practice since working with soils and plant roots can be difficult, particularly in saline environments. Coastal saline environments are major contributors to regional and global biodiversity and an important source of endemic species. However, various species are in decline or considered threatened, particularly halophytes (salt tolerant) due to negative anthropic impacts. The Lusitanian endemic halophyte Limonium daveaui formerly had a large distribution range along the west coast of Portugal but currently it shows a restricted distribution in the Tagus estuary. Field surveys revealed that this critically endangered species forms few local populations with small size invaded by exotic species. In this study, we investigated the potential utilization of Technosols, an innovative sustainable, ecological engineering method combined with brackish water irrigation for potential L. daveaui reintroduction in native habitats. Seed germination percentages were evaluated in different environmental conditions. Through a microcosm assay, a Technosol was constructed using a saline Fluvisol with a mixture of low value inorganic and organic wastes, which were chemically characterized. Plants were cultivated in the Fluvisol and Technosol and irrigated with brackish water collected in the nearby area. To assess plant growth, morphometric parameters and the plants’ physiological status were assessed and the fresh and dry biomass determined. Results showed that seed germination was higher on moist filter paper with distilled water than in Fluvisol or Technosol. Plants grown in Technosol had a greater development, with higher values of photosynthetic indexes and biomass production than in Fluvisol. Our findings provide a basis for future in situ conservation studies and support the idea that eco-friendly soil technology approaches are beneficial to conserve rare halophyte species.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2745634-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages