In:
Frontiers in Plant Science, Frontiers Media SA, Vol. 11 ( 2021-1-8)
Abstract:
Quantification of anatomical and compositional features underpins both fundamental and applied studies of plant structure and function. Relatively few non-invasive techniques are available for aquatic plants. Traditional methods such as sectioning are low-throughput and provide 2-dimensional information. X-ray Computed Microtomography (μCT) offers a non-destructive method of three dimensional (3D) imaging in planta , but has not been widely used for aquatic species, due to the difficulties in sample preparation and handling. We present a novel sample handling protocol for aquatic plant material developed for μCT imaging, using duckweed plants and turions as exemplars, and compare the method against existing approaches. This technique allows for previously unseen 3D volume analysis of gaseous filled spaces, cell material, and sub-cellular features. The described embedding method, utilizing petrolatum gel for sample mounting, was shown to preserve sample quality during scanning, and to display sufficiently different X-ray attenuation to the plant material to be easily differentiated by image analysis pipelines. We present this technique as an improved method for anatomical structural analysis that provides novel cellular and developmental information.
Type of Medium:
Online Resource
ISSN:
1664-462X
DOI:
10.3389/fpls.2020.617830
DOI:
10.3389/fpls.2020.617830.s001
DOI:
10.3389/fpls.2020.617830.s002
Language:
Unknown
Publisher:
Frontiers Media SA
Publication Date:
2021
detail.hit.zdb_id:
2687947-5
detail.hit.zdb_id:
2613694-6