In:
Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-3-29)
Kurzfassung:
How to non-destructively and quickly estimate the storage time of citrus fruit is necessary and urgent for freshness control in the fruit market. As a feasibility study, we present a non-destructive method for storage time prediction of Newhall navel oranges by investigating the characteristics of the rind oil glands in this paper. Through the observation using a digital microscope, the oil glands were divided into three types and the change of their proportions could indicate the rind status as well as the storage time. Images of the rind of the oranges were taken in intervals of 10 days for 40 days, and they were used to train and test the proposed prediction models based on K-Nearest Neighbors (KNN) and deep learning algorithms, respectively. The KNN-based model demonstrated explicit features for storage time prediction based on the gland characteristics and reached a high accuracy of 93.0%, and the deep learning-based model attained an even higher accuracy of 96.0% due to its strong adaptability and robustness. The workflow presented can be readily replicated to develop non-destructive methods to predict the storage time of other types of citrus fruit with similar oil gland characteristics in different storage conditions featuring high efficiency and accuracy.
Materialart:
Online-Ressource
ISSN:
1664-462X
DOI:
10.3389/fpls.2022.811630
Sprache:
Unbekannt
Verlag:
Frontiers Media SA
Publikationsdatum:
2022
ZDB Id:
2687947-5
ZDB Id:
2613694-6