Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Animals, MDPI AG, Vol. 10, No. 4 ( 2020-04-01), p. 601-
    Kurzfassung: Italy holds important genetic resources of small ruminant breeds. By distinguishing goat breeds at the DNA level, certification of products from specific breeds can be valorized. The aim of this study was to establish the genetic identity of Facciuta della Valnerina, a local goat population of Italy, compared with the cosmopolitan breeds, Saanen and Camosciata delle Alpi, reared in the same geographic area. A total of 116 microsatellite alleles ranging from 4 to 13 were detected at 16 loci in the three goat populations/breeds. A total of 23 private alleles with frequencies lower than 0.3 were detected in the Facciuta della Valnerina population. The mean numbers of alleles were 6.67, 4.58, and 4.92 in Facciuta della Valnerina, Camosciata delle Alpi, and Saanen, respectively. The expected heterozygosity ranged from 0.20 to 0.86. Most loci were highly polymorphic and informative (polymorphic information content ≥0.50). Factorial correspondence analysis and principal components analysis revealed very clear separation between Facciuta della Valnerina and the two reference goat breeds. Reducing the number of markers from 16 to 12 (on the basis of polymorphic information content and the number of alleles) still allowed us to distinguish the local population, indicating that microsatellite markers are capable of discriminating local livestock breeds at a low cost.
    Materialart: Online-Ressource
    ISSN: 2076-2615
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2606558-7
    SSG: 23
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz