In:
Brain Sciences, MDPI AG, Vol. 12, No. 9 ( 2022-09-10), p. 1229-
Kurzfassung:
It has been reported that attending to stimuli in visual modality can spread to task-irrelevant but synchronously presented stimuli in auditory modality, a phenomenon termed the cross-modal spread of attention, which could be either stimulus-driven or representation-driven depending on whether the visual constituent of an audiovisual object is further selected based on the object representation. The stimulus-driven spread of attention occurs whenever a task-irrelevant sound synchronizes with an attended visual stimulus, regardless of the cross-modal semantic congruency. The present study recorded event-related potentials (ERPs) to investigate whether the stimulus-driven cross-modal spread of attention could be modulated by audio-visual emotional congruency in a visual oddball task where emotion (positive/negative) was task-irrelevant. The results first demonstrated a prominent stimulus-driven spread of attention regardless of audio-visual emotional congruency by showing that for all audiovisual pairs, the extracted ERPs to the auditory constituents of audiovisual stimuli within the time window of 200–300 ms were significantly larger than ERPs to the same auditory stimuli delivered alone. However, the amplitude of this stimulus-driven auditory Nd component during 200–300 ms was significantly larger for emotionally incongruent than congruent audiovisual stimuli when their visual constituents’ emotional valences were negative. Moreover, the Nd was sustained during 300–400 ms only for the incongruent audiovisual stimuli with emotionally negative visual constituents. These findings suggest that although the occurrence of the stimulus-driven cross-modal spread of attention is independent of audio-visual emotional congruency, its magnitude is nevertheless modulated even when emotion is task-irrelevant.
Materialart:
Online-Ressource
ISSN:
2076-3425
DOI:
10.3390/brainsci12091229
Sprache:
Englisch
Verlag:
MDPI AG
Publikationsdatum:
2022
ZDB Id:
2651993-8