Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Buildings Vol. 13, No. 5 ( 2023-05-11), p. 1258-
    In: Buildings, MDPI AG, Vol. 13, No. 5 ( 2023-05-11), p. 1258-
    Abstract: Seismic damage assessment of reinforced concrete (RC) structures is a vital issue for post-earthquake evaluation. Conventional onsite inspection depends greatly on subjective judgments and engineering experiences of human inspectors, and the efficiency is limited to large-scale urban areas. This study proposes a computer-vision and machine-learning-based seismic damage assessment framework for RC structures. A refined Park-Ang model is built to express the coupled effects of structural ductility and energy dissipation, which reflects the nonlinear seismic damage accumulation and generates a synthetical seismic damage indicator within 0~1 using hysteretic curve data. A deep neural network is established to regress the damage indicator using damage-related and design-related parameters as inputs. The results show that the correlation coefficients between the predicted and actual seismic damage index exceed 0.98, and the predicted seismic damage index is unbiased and stable without overfitting. Furthermore, the effectiveness, robustness, and generalization ability of the proposed method are verified.
    Type of Medium: Online Resource
    ISSN: 2075-5309
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661539-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages