Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2022
    In:  Electronics Vol. 11, No. 17 ( 2022-09-01), p. 2761-
    In: Electronics, MDPI AG, Vol. 11, No. 17 ( 2022-09-01), p. 2761-
    Kurzfassung: In this paper, we present an artificial neural network (ANN)-based compact model to evaluate the characteristics of a nanosheet field-effect transistor (NSFET), which has been highlighted as a next-generation nano-device. To extract data reflecting the accurate physical characteristics of NSFETs, the Sentaurus TCAD (technology computer-aided design) simulator was used. The proposed ANN model accurately and efficiently predicts currents and capacitances of devices using the five proposed key geometric parameters and two voltage biases. A variety of experiments were carried out in order to create a powerful ANN-based compact model using a large amount of data up to the sub-3-nm node. In addition, the activation function, physics-augmented loss function, ANN structure, and preprocessing methods were used for effective and efficient ANN learning. The proposed model was implemented in Verilog-A. Both a global device model and a single-device model were developed, and their accuracy and speed were compared to those of the existing compact model. The proposed ANN-based compact model simulates device characteristics and circuit performances with high accuracy and speed. This is the first time that a machine learning (ML)-based compact model has been demonstrated to be several times faster than the existing compact model.
    Materialart: Online-Ressource
    ISSN: 2079-9292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2662127-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz