Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Wegen Wartungsarbeiten steht das KOBV-Portal am 11.03.2025 ggf. nur eingeschränkt zur Verfügung. Wir bitten um Ihr Verständnis.
Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Electronics Vol. 11, No. 17 ( 2022-09-01), p. 2761-
    In: Electronics, MDPI AG, Vol. 11, No. 17 ( 2022-09-01), p. 2761-
    Abstract: In this paper, we present an artificial neural network (ANN)-based compact model to evaluate the characteristics of a nanosheet field-effect transistor (NSFET), which has been highlighted as a next-generation nano-device. To extract data reflecting the accurate physical characteristics of NSFETs, the Sentaurus TCAD (technology computer-aided design) simulator was used. The proposed ANN model accurately and efficiently predicts currents and capacitances of devices using the five proposed key geometric parameters and two voltage biases. A variety of experiments were carried out in order to create a powerful ANN-based compact model using a large amount of data up to the sub-3-nm node. In addition, the activation function, physics-augmented loss function, ANN structure, and preprocessing methods were used for effective and efficient ANN learning. The proposed model was implemented in Verilog-A. Both a global device model and a single-device model were developed, and their accuracy and speed were compared to those of the existing compact model. The proposed ANN-based compact model simulates device characteristics and circuit performances with high accuracy and speed. This is the first time that a machine learning (ML)-based compact model has been demonstrated to be several times faster than the existing compact model.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662127-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages