Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Energies, MDPI AG, Vol. 16, No. 4 ( 2023-02-06), p. 1625-
    Kurzfassung: Building a new power system with renewable energy as its main component is a key measure proposed by China to address the climate change problem. Strengthening demand-side management (DSM) is an important way to promote the development of a new power system. As an important economic incentive measure in DSM, the current TOU tariff is faced with the problem of a weak incentive effect due to the small tariff difference between the peak and valley periods. Against this background, a novel hybrid three-stage seasonal TOU tariff optimization model is proposed in this paper. First, the K-means++ algorithm is adopted to select the typical days of the four seasons through load curve clustering. Then, the price elasticity of the electricity demand model is constructed to calculate the self-elasticity and cross-elasticity in four seasons. Finally, the seasonal TOU tariff optimization model is constructed to determine the optimal TOU tariff. Through the proposed model, the tariff in the peak period has increased by 8.06–15.39%, and the tariff in the valley period has decreased by 18.48–27.95%. The result shows that the load in the peak period has decreased by 4.03–8.02% and the load in the valley period has increased by 6.41–9.75% through the proposed model.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz