Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Foods, MDPI AG, Vol. 11, No. 11 ( 2022-06-01), p. 1634-
    Abstract: In this study, high-density lipoprotein (HDL) from duck egg yolk was subjected to oxidation with a system based on 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-derived peroxyl radicals. The effects of peroxyl radicals on the protein carbonyl, free sulfhydryl, secondary/tertiary structure, surface hydrophobicity, solubility, particle size distribution, zeta potential and fatty acid composition of HDL were investigated by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy (FTIR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering and ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The results indicated that the content of protein carbonyl was significantly increased, that of free sulfhydryl was obviously reduced, and the ordered secondary structure was also decreased with increasing AAPH concentration. In addition, the surface hydrophobicity and solubility of HDL showed apparent increases due to the exposure of hydrophobic groups and aggregation of protein caused by oxidation. The fatty acid composition of HDL exhibited pronounced changes due to the disrupted protein–lipid interaction and lipid oxidation by AAPH-derived peroxyl radicals. These results may help to elucidate the molecular mechanism for the effect of lipid oxidation products on the oxidation of duck yolk proteins.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704223-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages