Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  ISPRS International Journal of Geo-Information Vol. 11, No. 9 ( 2022-08-31), p. 475-
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 11, No. 9 ( 2022-08-31), p. 475-
    Abstract: GPS trajectories collected from automotive telematics for insurance purposes go beyond being a collection of points on the map. They are in fact a powerful data source that we can use to extract map and road network properties. While the location of road junctions is readily available, the information about the traffic control element regulating the intersection is typically unknown. However, this information would be helpful, e.g., for contextualizing a driver’s behavior. Our focus is to use a map-matched GPS OBD-dongle dataset provided by a Canadian insurance company to classify intersections into three classes according to the type of traffic control element present: traffic light, stop sign, or no sign. We design a convolutional neural network (CNN) for classifying intersections. The network takes as entries, for a defined number of trips, the speed and the acceleration profiles over each segment of one meter on a window around the intersection. Our method outperforms two other competing approaches, achieving 99% overall accuracy. Furthermore, our CNN model can infer the three classes even with as few as 25 trips.
    Type of Medium: Online Resource
    ISSN: 2220-9964
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2655790-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages