Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Materials, MDPI AG, Vol. 12, No. 3 ( 2019-01-31), p. 435-
    Abstract: Carbon composite is widely used in various fields, including the aerospace industry, electrical engineering, transportation engineering, etc. For electrified railways, the pantograph strip utilizes carbon composite as the current collector, which might bear multiple impacts from electrical, mechanical, or thermal aspects, from unwanted arcing, rain, and other diverse operation conditions. In this paper, a thermal shock damage experiment on the carbon composite of a pantograph strip was carried out. The thermal shock processes were realized by the adoption of muffle furnace heating and water cooling. The effect of thermal shock processes on carbon strip porosity, compressive strength, electrical resistivity, and surface topography were studied. In order to verify the mechanism of thermal shock damage to the pantograph strip, the porosity of the pantograph strip is discussed in detail. The results showed that the thermal shock process increased the porosity of the carbon strip and caused reductions in compressive strength and electrical resistivity. The multiple thermal shock processes caused irreversible damage to the pantograph strip, which was attributed to the spillover and scouring of large quantities of water vapor in the pores.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2487261-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages