Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Materials Vol. 12, No. 14 ( 2019-07-10), p. 2226-
    In: Materials, MDPI AG, Vol. 12, No. 14 ( 2019-07-10), p. 2226-
    Abstract: A new type of laser system, known as a digital laser, was proposed in 2013. Many well-known laser beams with known analytical forms have been successfully generated in digital lasers. However, for a light field that does not have an analytical form, such as a multi-point light field or a light field with an arbitrary lateral distribution, how to generate such a light field from a digital laser has not been explored. The goal of this study was to experimentally explore how to generate an on-demand lateral laser field in a digital laser. In this study, a multi-point Gaussian laser beam was successfully generated in a digital laser by both controlling the range of the laser gain and the modulation of the phase boundary of the end of the cavity. This study then generated laser beams with an on-demand lateral field distribution by generating a superimposed multi-point laser field in a digital laser. Examples of triangles, rectangles, and letter T-shaped light fields produced by digital lasers were experimentally demonstrated. In summary, this study experimentally showed that a laser beam with an on-demand lateral field distribution could be generated in a digital laser by generating a superimposed multi-point laser field in a digital laser, in which a laser gain region covering the entire intra-cavity multi-point light field and the projected SLM (spatial light modulator) modulation function adopting a mimic amplitude mask are both used.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2487261-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages