Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Materials, MDPI AG, Vol. 16, No. 4 ( 2023-02-16), p. 1668-
    Abstract: Fiber–metal hybrid composites are widely used in high-tech industries due to their unique combination of mechanical, toughness and ductile properties. Currently, hybrid materials made of metals and high-performance fibers have been limited to layer-by-layer hybridization (fiber–metal laminates). However, layer-by-layer hybridization lacks in fiber to fiber mixing, resulting in poor inter-laminar interfaces. The objective of this paper was to establish the fundamental knowledge and application-related technological principles for the development and fabrication of air-textured commingled yarn composed of glass (GF), stainless steel (SS) and polyamide-6 (PA-6) filaments for fiber–metal hybrid composites. For this purpose, extensive conceptual, design and technological developments were carried out to develop a novel air-texturing nozzle that can produce an innovative metallic commingled yarn. The results show that an innovative metallic commingled yarn was developed using fiber–metal hybrid composites with a composite tensile strength of 700 ± 39 MPa and an E-modulus of 55 ± 7. This shows that the developed metallic commingled yarn is a suitable candidate for producing metal–fiber hybrid composites.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages