Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Materials Vol. 16, No. 4 ( 2023-02-20), p. 1731-
    In: Materials, MDPI AG, Vol. 16, No. 4 ( 2023-02-20), p. 1731-
    Abstract: The interaction of metallic glasses (MGs) with hydrogen can trigger many interesting physical, chemical and mechanical phenomena. However, atomic-scale understanding is still lacking. In this work, molecular dynamics (MD) simulations are employed to study the atomic structure, mechanical properties and relaxation behaviors of H-doped Ni50Al50 MGs doped by two methods. The properties of H-doped MGs are determined not only by the hydrogen content but also by the doping method. When H atoms are doped into the molten state of samples, H atoms can fully diffuse and interact with metallic atoms, resulting in loose local atomic structures, homogeneous deformation and enhanced β relaxation. In contrast, when H atoms are doped into as-cast MGs, the H content is crucial in affecting the atomic structure and mechanical properties. A small number of H atoms has little influence on the elastic matrix, while the percolation of shear transformation zones (STZs) is hindered by H atoms, resulting in the delay of shear band (SB) formation and an insignificant change in the strength. However, a large number of H atoms can make the elastic matrix loose, leading to the decrease in strength and the transition of the deformation mode from SB to homogeneous deformation. The H effects on the elastic matrix and flow units are also applied to the dynamic relaxation. The deformability of H-doped Ni50Al50 MGs is enhanced by both H-doping methods; however, our results reveal that the mechanisms are different.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages