Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Metals Vol. 10, No. 8 ( 2020-08-06), p. 1058-
    In: Metals, MDPI AG, Vol. 10, No. 8 ( 2020-08-06), p. 1058-
    Abstract: The roles of microstructure in plastic deformation and crack growth mechanisms of a titanium alloy with a trimodal microstructure have been systematically investigated. The results show that thick intragranular α lath and a small number of equiaxed α phases avoid the nucleation of cracks at the grain boundary, resulting in branching and fluctuation of cracks. Based on electron back-scattered diffraction, the strain partition and plastic deformation ahead of the crack tip were observed and analyzed in detail. Due to the toughening effect of the softer equiaxed α phase at the grain boundary, crack arresting and blunting are prevalent, improving the crack growth resistance and generating a relatively superior fracture toughness performance. These results indicate that a small amount of large globular α phases is beneficial to increase the crack propagation resistance and, thus, a good combination of mechanical property is obtained in the trimodal microstructure.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662252-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages