Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Metals Vol. 9, No. 6 ( 2019-06-04), p. 651-
    In: Metals, MDPI AG, Vol. 9, No. 6 ( 2019-06-04), p. 651-
    Abstract: Overlay-welding of IN52M and IN52MSS onto CF8A stainless steel (SS) was conducted by a gas tungsten arc welding process in multiple passes. An electron probe micro-analyzer (EPMA) was applied to determine the distributions and chemical compositions of the grain boundary microconstituents, and the structures were identified by electron backscatter diffraction (EBSD). The hot cracking of the overlay welds was related to the microconstituents at the interdendritic boundaries. The formation of γ-intermetallic (Ni3(Nb,Mo)) eutectics was responsible predominantly for the hot cracking of the 52M and 52MSS overlays. The greater Nb and Mo contents in the 52MSS overlay enhanced the formation of coarser microconstituents in greater amounts at the interdendritic boundaries. Thus, the hot cracking sensitivity of the 52MSS overlay was higher than that of the 52M overlay. Moreover, migrated grain boundaries were observed in the 52M and 52MSS overlays but did not induce ductility dip cracking (DDC) in this study.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662252-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages