Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microorganisms, MDPI AG, Vol. 8, No. 12 ( 2020-12-12), p. 1979-
    Abstract: The widespread use of polyethylene (PE) mulch films has led to a significant accumulation of plastic waste in agricultural soils. The biodegradation of plastic waste by microorganisms promises to provide a cost-effective and environmentally-friendly alternative for mitigating soil plastic pollution. A large number of microorganisms capable of degrading PE have been reported, but degradation may be further enhanced by the cooperative activity of multiple microbial species. Here, two novel strains of Arthrobacter sp. and Streptomyces sp. were isolated from agricultural soils and shown to grow with PE film as a sole carbon source. Arthrobacter sp. mainly grew in the suspension phase of the culture, and Streptomyces sp. formed substantial biofilms on the surface of the PE film, indicating that these strains were of different metabolic types and occupied different microenvironments with contrasting nutritional access. Individual strains were able to degrade the PE film to some extent in a 90-day inoculation experiment, as indicated by decreased hydrophobicity, increased carbonyl index and CO2 evolution, and the formation of biofilms on the film surface. However, a consortium of both strains had a much greater effect on these degradation properties. Together, these results provide new insights into the mechanisms of PE biodegradation by a microbial consortium composed of different types of microbes with possible metabolic complementarities.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2720891-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages