Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Minerals, MDPI AG, Vol. 9, No. 9 ( 2019-08-30), p. 526-
    Abstract: Removal of calcium and magnesium ions through biomineralization induced by bacteria has been proven to be an effective and environmentally friendly method to improve water quality, but the process and mechanism are far from fully understood. In this study, a newly isolated probiotic Bacillus licheniformis SRB2 (GenBank: KM884945.1) was used to induce the bio-precipitation of calcium and magnesium at various Mg/Ca molar ratios (0, 6, 8, 10, and 12) in medium with 30 g L−1 sodium chloride. Due to the increasing pH and HCO3− and CO32− concentrations caused by NH3 and carbonic anhydrase, about 98% Ca2+ and 50% Mg2+ were precipitated in 12 days. The pathways of bio-precipitation include extracellular and intracellular processes. Biominerals with more negative δ13C values (−16‰ to −18‰) were formed including calcite, vaterite, monohydrocalcite, and nesquehonite with preferred orientation. The nucleation on extracellular polymeric substances was controlled by the negatively charged amino acids and organic functional groups. The intracellular amorphous inclusions containing calcium and magnesium also contributed to the bio-precipitation. This study reveals the process and mechanism of microbial desalination for the removal of calcium and magnesium, and provides some references to explain the formation of the nesquehonite and other carbonate minerals in a natural and ancient earth surface environment.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2655947-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages