Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Molecules Vol. 25, No. 6 ( 2020-03-22), p. 1437-
    In: Molecules, MDPI AG, Vol. 25, No. 6 ( 2020-03-22), p. 1437-
    Abstract: Oxyresveratrol and gnetol are naturally occurring stilbene compounds, which have diverse pharmacological activities. The water-insolubility of these compounds limits their further pharmacological exploitation. The glycosylation of bioactive compounds can enhance their water-solubility, physicochemical stability, intestinal absorption, and biological half-life, and improve their bio- and pharmacological properties. Plant cell cultures are ideal systems for propagating rare plants and for studying the biosynthesis of secondary metabolites. Furthermore, the biotransformation of various organic compounds has been investigated as a target in the biotechnological application of plant cell culture systems. Cultured plant cells can glycosylate not only endogenous metabolic intermediates but also xenobiotics. In plants, glycosylation reaction acts for decreasing the toxicity of xenobiotics. There have been a few studies of glycosylation of exogenously administrated stilbene compounds at their 3- and 4′-positions by cultured plant cells of Ipomoea batatas and Strophanthus gratus so far. However, little attention has been paid to the glycosylation of 2′-hydroxy group of stilbene compounds by cultured plant cells. In this work, it is described that oxyresveratrol (3,5,2′,4′–tetrahydroxystilbene) was transformed to 3-, 2′-, and 4′-β-glucosides of oxyresveratrol by biotransformation with cultured Phytolacca americana cells. On the other hand, gnetol (3,5,2′,6′–tetrahydroxystilbene) was converted into 2′-β-glucoside of gnetol by cultured P. americana cells. Oxyresveratrol 2′-β-glucoside and gnetol 2′-β-glucoside are two new compounds. This paper reports, for the first time, the glycosylation of stilbene compounds at their 2′-position by cultured plant cells.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages