Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Molecules, MDPI AG, Vol. 28, No. 19 ( 2023-09-28), p. 6860-
    Kurzfassung: Lonicerae japonicae flos and Lonicerae flos are increasingly widely used in food and traditional medicine products around the world. Due to their high demand and similar appearance, they are often used in a confused or adulterated way; therefore, a rapid and comprehensive analytical method is highly required. In this case, the comparative analysis of a total of 100 samples with different species, growth modes, and processing methods was carried out by nuclear magnetic resonance (1H-NMR) spectroscopy and chemical pattern recognition analysis. The obtained 1H-NMR spectrums were employed by principal component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and linear discriminant analysis (LDA). Specifically, after the dimensionality reduction of data, linear discriminant analysis (LDA) exhibited good classification abilities for the species, growth modes, and processing methods. It is worth noting that the sample prediction accuracy from the testing set and the cross-validation predictions of the LDA models were higher than 95.65% and 98.1%, respectively. In addition, the results showed that macranthoidin A, macranthoidin B, and dipsacoside B could be considered as the main differential components of Lonicerae japonicae flos and Lonicerae Flos, while secoxyloganin, secologanoside, and sweroside could be responsible for distinguishing cultivated and wild Lonicerae japonicae Flos. Accordingly, 1H-NMR spectroscopy combined with chemical pattern recognition gives a comprehensive overview and provides new insight into the quality control and evaluation of Lonicerae japonicae flos.
    Materialart: Online-Ressource
    ISSN: 1420-3049
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2008644-1
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz