In:
Nanomaterials, MDPI AG, Vol. 12, No. 15 ( 2022-07-30), p. 2637-
Kurzfassung:
With the continuous progress of artificial intelligence and other manufacturing technologies, there is promising potential for wearable piezoresistive sensors in human physiological signal detection and bionic robots. Here, we present a facile solution-mixing process to fabricate a multiwalled carbon nanotube/graphite powder (MWCNT@Gp) film, which has high sensitivity and great linearity and is more oriented to flexible piezoresistive sensors. The sensor consists of two parts: a spinosum microstructure shaped by a sandpaper template and polydimethylsiloxane (PDMS) as the top substrate and interdigital electrodes as the bottom substrate. The experiments we have conducted show that these two parts provide good protection to the MWCNTs@Gp film and improve sensor sensitivity. Additionally, the sensitivity of the optimal ratio of multiwalled carbon nanotubes and graphite powder is analyzed. The 5%MWCNT@5%Gp composites were found to have relatively good conductivity, which is convenient for the fabrication of conductive films of piezoresistive sensors. Finally, we conducted application experiments and found that the flexible piezoresistive sensor can detect minute signals of human motion and different pressure points. This indicates the feasibility of portable sensors in electronic skin and smart devices.
Materialart:
Online-Ressource
ISSN:
2079-4991
DOI:
10.3390/nano12152637
Sprache:
Englisch
Verlag:
MDPI AG
Publikationsdatum:
2022
ZDB Id:
2662255-5