Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Plants, MDPI AG, Vol. 11, No. 5 ( 2022-02-27), p. 648-
    Abstract: Oxidative stress and chronic inflammation have a role in developing neurodegenerative diseases such as Parkinson’s disease (PD) and inflammatory movement disorders such as rheumatoid arthritis that affect millions of populations. In searching for antioxidant and anti-inflammatory molecules from natural sources that can counteract neurodegenerative diseases and arthritis, the flavonoid-rich extract of Diplotaxis harra (DHE) was selected based on its in vitro antioxidant and anti-inflammatory activities. DHE could inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages from 100% to the level of 28.51 ± 18.67 and 30.19 ± 5.00% at 20 μg/mL, respectively. A TLC bioautography of DHE fractions using 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) led to the isolation of a major antioxidant compound which was identified by X-ray diffraction analysis as isorhamnetin-3-O-β-D-glucoside (IR3G). IR3G also exhibited a potent anti-inflammatory activity, particularly by suppressing the upregulation of iNOS expression, similar to that of dexamethasone (DEX) at 10 μM to the level of 35.96 ± 7.80 and 29.34 ± 6.34%, respectively. Moreover, IR3G displayed a strong neuroprotectivity ( 〉 60% at 1.0−4–1.0−3 μM) against 6-hydroxydopamine (6-OHDA)-challenged SHSY5Y neuroblastoma, an in vitro model of dopaminergic neurons for Parkinson’s disease (PD) research. Accordingly, the in vivo anti-Parkinson potentiality was evaluated, where it was found that IR3G successfully reversed the 6-OHDA-induced locomotor deficit in a zebrafish model. A study of molecular docking and molecular dynamic (MD) simulation of IR3G and its aglycone isorhamnetin (IR) against human acetylcholine esterase (AChE), monoamine oxidase B (MAO-B), and Polo-like kinase-2 (PLK2) was performed and further outlined a putative mechanism in modulating neurodegenerative diseases such as PD. The free radical scavenging, anti-inflammatory through anti-iNOS and anti-COX-2 expression, and neuroprotective activities assessed in this study would present partial evidence for the potentiality of D. harra-derived IR3G as a promising natural therapeutic agent against neurodegenerative diseases and inflammatory arthritis. Finally, a biphasic HPTLC method was developed to estimate the biomarker IR3G in D. harra quantitatively.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages