Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Plants, MDPI AG, Vol. 11, No. 24 ( 2022-12-12), p. 3475-
    Abstract: Global warming is a serious threat to food security and severely affects plant growth, developmental processes, and, eventually, crop productivity. Respiratory metabolism plays a critical role in the adaptation of diverse stress in plants. Aconitase (ACO) is the main enzyme, which catalyzes the revocable isomerization of citrate to isocitrate in the Krebs cycle. The function of ACO gene family members has been extensively studied in model plants, for instance Arabidopsis. However, their role in plant developmental processes and various stress conditions largely remained unknown in other plant species. Thus, we identified 15 ACO genes in wheat to elucidate their function in plant developmental processes and different stress environments. The phylogenetic tree revealed that TaACO genes were classified into six groups. Further, gene structure analysis of TaACOs has shown a distinctive evolutionary path. Synteny analysis showed the 84 orthologous gene pairs in Brachypodium distachyon, Aegilops tauschii, Triticum dicoccoides, Oryza sativa, and Arabidopsis thaliana. Furthermore, Ka/Ks ratio revealed that most TaACO genes experienced strong purifying selection during evolution. Numerous cis-acting regulatory elements were detected in the TaACO promoters, which play a crucial role in plant development processes, phytohormone signaling, and are related to defense and stress. To understand the function of TaACO genes, the expression profiling of TaACO genes were investigated in different tissues, developmental stages, and stress conditions. The transcript per million values of TaACOs genes were retrieved from the Wheat Expression Browser Database. We noticed the differential expression of the TaACO genes in different tissues and various stress conditions. Moreover, gene ontology analysis has shown enrichment in the tricarboxylic acid metabolic process (GO:0072350), citrate metabolic process (GO:0006101), isocitrate metabolic process GO:0006102, carbohydrate metabolic (GO:0005975), and glyoxylate metabolic process (GO:0046487). Therefore, this study provided valuable insight into the ACO gene family in wheat and contributed to the further functional characterization of TaACO during different plant development processes and various stress conditions.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages