In:
Polymers, MDPI AG, Vol. 14, No. 15 ( 2022-07-27), p. 3032-
Abstract:
Localized heat sources, such as flame guns and high-energy lasers, can cause severe damage to conventional materials. In this study, a novel localized heat-resistant coating with a high in-plane thermal conductivity was designed and prepared. Reduced graphene oxide (rGO) effectively improved the in-plane thermal conductivity of the polyvinyl alcohol (PVA) film, while maintaining the thermal insulation of the resin matrix in the through-plane direction. This characteristic of the rGO/PVA film was combined with the thermal insulation of boron-modified phenolic resin (BPF), and the prepared composite coating with two layers of rGO/PVA films effectively lowered the back-surface temperature in the flame ablation test from 151 to 107 °C. In addition, the area of the ablation-affected region of coating was increased to 103.6 cm2 from 31.9 cm2, indicating an excellent heat transfer performance. The layer-by-layer structure could realize the compatibility of high in-plane thermal conductivity and good through-plane thermal insulation. The synergy of these two different characteristics is demonstrated to be the key to improving the localized heat-resistant performance of the composite coating. This study effectively expands the application range of high-conductive film, and the obtained coating could act as a shield against butane flame, high energy lasers, and other localized heat.
Type of Medium:
Online Resource
ISSN:
2073-4360
DOI:
10.3390/polym14153032
Language:
English
Publisher:
MDPI AG
Publication Date:
2022
detail.hit.zdb_id:
2527146-5